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A theoretical study of excitation waves propagating in two-dimensional excitable media through the bound-
ary line between two areas with different properties is presented and compared with available experimental
evidences. Based on the kinematic approach, a complete set of steady wave-front configurations have been
constructed for unbounded media, for media confined in a half-plane, and for a strip. Our results confirm the
experimentally observed Snell’s law for incident and refracted autowaves, and the existence of a critical angle
for total internal reflection.@S1063-651X~96!02108-3#

PACS number~s!: 03.40.Kf

I. INTRODUCTION

The dynamics of wave fronts propagating in two-
dimensional~2D! and three-dimensional~3D! excitable me-
dia ~EM! have become a focus of much study since the ob-
servation of nontrivial spirallike patterns in chemical
reactions @e.g., Belousov-Zhabotinsky~BZ! reaction# and
neuromuscular tissues@1,2#. Excitation waves~autowaves! in
2D and 3D EM come in a variety of shapes and move in
complicated patterns, which still challenge satisfactory theo-
retical explanations.

Continuous mathematical models of EM are usually for-
mulated in terms of nonlinear parabolic partial differential
equations~PDE! @3,4#:

]ui
]t

5DiDui1 f i~u1 ,u2 , . . . ,um!, ~1!

where$ui% is a set of local kinetic variables determining the
state of the EM,Di are transport coefficients,D is the La-
placian operator with respect to space variables,f i are non-
linear functions ofu1 , u2 , . . . ,um describing the local kinet-
ics of the system, and the dimension of physical space can be
1, 2, or 3. Usually, system~1! is subject to no-flux~Neu-
mann! boundary conditions

gradui uboundary•n50, ~2!

wheren is a unit vector normal to the boundary.
The basic features of autowave propagating in EM can be

reproduced by two-component models (m52): an excitation
variable (u) and a recovery variable (v). It is arranged that a
single equilibrium state (ue,ve) exists. Small perturbations
from the equilibrium state return directly to (ue,ve), but su-
prathreshold perturbations in the system invoke an excitation
cycle which results in the generation of a propagating pulse
~solitary autowave! whose leading front corresponds to the
transition wave from the state of rest to an excited state, and
whose trailing front corresponds to a return of the system to
the equilibrium state. The recovery variable (v) is respon-
sible for the appearance of the trailing front and the tempo-
rarily unexcitable region just behind an excitation front. Im-
portant particular cases of such systems are the Oregonator

and the FitzHugh-Nagumo~FHN! equations used to describe
~respectively! the autocatalytic BZ reaction, and excitation
waves in nerve and muscle tissue@5#.

In homogeneous EM, an isolated planar autowave propa-
gates with constant amplitude, shape, and speed. A periodic
train of planar autowaves propagates with amplitude, shape,
and speed that depend on the spacing between the waves
~dispersion! @6,7#. If a wave front is curved, its speed de-
pends on its curvature@6,8,9#. Because a wave front of ex-
citation is always followed by a zone of inexcitability, col-
liding autowaves tend to annihilate each other and disappear
at boundaries, which distinguishes them significantly from
electromagnetic or soliton waves@10,11#.

Recently considerable attention has been attracted to the
study of autowaves propagating in inhomogeneous media
@4,12–17#. Natural EM are often inhomogeneous, due to
temperature or concentration gradients, and controlled inho-
mogeneities can be created with ultraviolet or visible light
@12,13,17,18#, ultrasonic radiation@19#, or electrical fields
@14#. For inhomogeneous media the local kinetics vary in
space, that is, the functionsf 1,2 depend, apart from the state
variables$u,v%, also on the space variables$x,y,z%. If the
transport coefficients are space dependent as well
Di5Di(x,y,z) then the first term on the right-hand side of
~1! must be replaced by div~Digradui!.

The reaction of a wave front to an inhomogeneity depends
on the size of the perturbed area of EM. Local defects~like
concentration fluctuations, nonexcitable or poorly excitable
areas! are inhomogeneities whose sizes are smaller or com-
parable to the width of an excitation pulse. A wave front may
overcome them and recover its shape, but they may also be
responsible for breaking fronts and initiating spiral waves~a
commonly believed origin of tachycardia@2,20#! @21#. If the
density of local defects is large enough, the wave-front pat-
tern can become chaotic@22#.

For global inhomogeneity, properties of the medium vary
continuously at scales much larger than the width of the
excitation pulse, or the medium is divided in large pieces
with different properties by negligibly thin boundaries pen-
etrable by excitation waves. In some circumstances, steady-
state or nearly steady-state regimes may be expected in such
media. For instance, spiral waves drift in globally inhomo-
geneous media@23#, as they do along impenetrable bound-
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aries @24#; bell-like waves propagate in a medium with a
stripe @13,25,26#; and saw-tooth patterns of crossing waves
develop in coupled excitable layers@27#.

One of the simplest examples of global inhomogeneity is
stratification. In this case, properties of the medium vary in
space in one direction only. For instance, a layer of BZ re-
agent in a petri dish has an oxygen concentration gradient
~and a concomitant excitability gradient! from the air-liquid
interface to the liquid-glass interface. Waves can also propa-
gate in adjacent excitable layers with different properties. In
some cases the property varies abruptly from layer to layer,
and the medium can be considered as piecewise constant
stratified. In contrast to an impenetrable~no-flux! boundary,
the boundary between adjacent excitable layers may be semi-
penetrable, provided that the excitation does not disappear
from layer to layer. The phenomena of autowave propagation
in layered EM can be important in biological tissues, marine
and lake ecological systems, and multilayer solid state de-
vices ~consider, for instance, the practical importance of
electromagnetic waves propagating in optical layers!. Recent
experiments with the BZ reaction@12,13,16,17# and theoreti-
cal studies@25,26# have shown that excitation fronts undergo
nontrivial transformations in media with piecewise inhomo-
geneity. Many questions about autowaves propagation in
piecewise media remain open. For instance, it has been be-
lieved for a long time that autowaves do not reflect from
boundaries@28#, but recently wave reflection in the BZ reac-
tion has been observed@12,16,29#. Recent theoretical works
have shown the possibility of autowave reflection in special
circumstances@30,31#.

As with other theories of piecewise continuous media,
autowave front configurations in piecewise EM are to be
constructed from solutions for homogeneous media with ap-
propriate concatenation of the solutions~and their deriva-
tives! along boundary lines. For example, for the EM con-
sisting of two half-planes with different properties abutting
along theX axis, the semipenetrable boundary conditions are

ui uy5015ui uy502, ~3!

Di S ]ui
]y D

y501

5Di S ]ui
]y D

y502

. ~4!

This simple algorithm turns out to be difficult to follow be-
cause analytical solutions of the reaction-diffusion system
for 2D are not available.

The only theoretical attempt to study autowave refraction
and reflection in 2D EM using this recipe was undertaken by
Mornev a decade ago@32#. In the framework of model~1!,
he studied qualitatively propagation of planar waves through
a border dividing the medium into two half-planes with dif-
ferent diffusion coefficients (D1,2) and identical local kinet-
ics. Considering incident and refracted waves as being planar
waves and using conditions of continuity for concentration
variables and diffusion fluxes, he reached the following con-
clusions:

~1! Autowaves undergo refraction at angles uniquely de-
termined by the diffusivities of the homogeneous regions.
That is, the initial position of autowave fronts on both sides

of the D-jump line can be preset arbitrarily, but, as time
elapses, incident and refracted angles become entirely deter-
mined by diffusion

sinc incid5AD1 /~D11D2!, sinc refr5AD2 /~D11D2!,
~5!

and obey an opticslike sin condition

sinc incid

sinc refr
5AD1 /D2[n12, ~6!

~2! ‘‘In active media with diffusion, reflected waves are
not observable.. . . In optics, the total internal reflection
takes place when the angles of incidence exceed Brewster’s
angle. This phenomenon is not observed in active media; the
refracted component of the autowave. . . exists with any
value ofcincid within the interval 0,cincid,p/2’’ @33#.

~3! When an autowave front travels from a region with a
small value ofD to a region with a bigger one, and the
‘‘refractive index’’ n12 is less than a certain critical value,
the front cannot pass across the interface: the line ofD jump
becomes opaque for approaching plane autowaves.

Mornev’s simplified analysis was based on a straightfor-
ward generalization of one-dimensional propagation for 2D
EM. One of the main features of autowave propagation in 2D
and 3D cases, namely, the curvature effect, was not taken
into account. As a result, a nonphysical singularity of the
autowave front on the line ofD jump appears. Also, he did
not consider inhomogeneity due to variation of nonlinear ki-
netics, which would allow for comparison with recent ex-
periments@12,16#.

In this paper we study the evolution of autowave fronts in
2D EM containing one straight semipenetrable boundary be-
tween two areas with different properties. Our study is based
on the kinematic approach, a brief description of which is
given in Sec. II. In Sec. III we construct steady-state wave-
front configurations in an unbounded medium consisting of
two adjacent half-planes with different properties. Next we
introduce one impenetrable boundary~a half-plane with an
adjacent stripe! and then two impenetrable boundaries~two
adjacent strips with different properties!. We explore varia-
tions in both diffusion coefficients and reaction rates. In
Secs. IV and V we compare our results with recent experi-
ments and discuss further implications of our findings.

II. MODEL AND SOLUTIONS

A comprehensive consideration of autowave propagation
in piecewise media has to be based on system~1!. Unfortu-
nately, analytical solutions for 2D reaction-diffusion systems
are not available. Numerical integration is useful in many
cases but can be extremely demanding of computer re-
sources. Therefore some preliminary analytical or approxi-
mate results are advisable before one starts ‘‘number crunch-
ing.’’ In order to get an idea of what to expect, we face this
study on the kinematic approach—the only method giving a
global, though certainly approximate, picture of the phenom-
ena under consideration. Here we mention those details of
the approach which are necessary for understanding our re-
sults, referring for a fuller treatment to recent reviews@34#.

In the kinematic description a pulse structure is reduced to
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one point, so that an excited region in a 2D EM is conceived
as an infinitely thin curved line with a normal vector pointing
in the direction of the excitation propagation. Each point on
the linelike front moves in the normal direction with a ve-
locity V5V(k) determined by the front curvaturek at this
point. For reaction-diffusion systems this dependence, fork
not too close to some critical valuekcr , can be taken as linear
@6,8,9#

V~k!5V02Dk ~eikonal approximation!. ~7!

Here V0 is the velocity of the planar front, andD is the
diffusion coefficient of the excitation variable. The kinematic
approach specifies the shape of the wave front by the intrin-
sic equationk5k( l ,t) that for each moment of timet relates
the curvature of the front to the arc length along the frontl .
For a steady-state front~which propagates without change of
shape! ]k/]t50, and the profile of an endless front,lP
(2`,1`), propagating in 2D flat EM obeys the following
nonlocal integro-differential equation@35#

k~ l !E
0

l

k~j!V@k~j!#dj1
dV@k~ l !#

dl
50. ~8!

By putting the right-hand side equal to zero we have ex-
cluded from consideration circulating solutions, which are
irrelevant to the present work@36#. A boundary condition
k(0) also has to be specified in order to determine a unique
solution of Eq.~8!.

The intrinsic equationk( l ) defines the front curve
uniquely except for its position and orientation on a plane.
Parametric representation of an actual front line in the Car-
tesian frame of reference can be constructed from the intrin-
sic equation by a standard procedure@25,37#. In particular,
the angle between the tangent to the wave front at the point
l and the axisOY, taken as positive if measured clockwise
from the positive direction of the axisOY, is

u~ l !52E
0

l

k~j!dj. ~9!

Multiplying ~8! by V(k), integrating once, and changing
variables froml to u, we find that

F E
0

u

V~u!duG21@V~u!#25@V~0!#2, ~10!

whereV(0) denotes the normal velocity of the wave atu5 l
50, to be distinguished fromV0 , the velocity atk50. Equa-
tion ~10! has the obvious solution

V~u!5V~0!cosu, ~11!

which implies that the wave propagates along theX axis with
speedV(0). Differentiating ~11! with respect tol , we find
that

D
dk

dl
1kA@V~0!#22@V~k!#250. ~12!

Solutions of this first-order differential equation are param-
etrized by the valuek(0) @25#.

A planar front [k( l )50] propagating with constant veloc-
ity V(k)5V05const is obviously a trivial steady-state solu-
tion of ~12! and hence~8!.

For k(0),0, the front propagates in the form of a
V-shaped wave@38#. Its profile is described by the soliton-
type expression

k~ l !52
1

D

@V~0!#22V0
2

V01V~0!coshF ll 0G
, 2`, l,`, ~13!

with the characteristic lengthl 05D/Au@V(0)#22V0
2u. The

curvature of this front decreases exponentially asl goes to
infinity k( l→6`)→0 and the asymptotic angle follows di-
rectly from Eq. ~11!, u( l→6`)5arccos@V0/V(0)]. The
V-shaped pattern moves uniformly, with velocityV(0).V0
~i.e., faster than a planar front!, from left to right as shown in
Fig. 1. As k(0)→0, the angle between asymptotes of a
V-shaped wave increases top and the velocity of the pattern
decreases toV0 , that is the pattern converts into a plane
wave.

Positivek(0) gives birth to space oscillating fronts with
shapes described by

k~ l !52
1

D

@V~0!#22V0
2

V01V~0!cosF ll 0G
. ~14!

As k(0) increases from zero up tok(0).V0/D, the ampli-
tude of the front oscillations decreases fromV0/D to zero,
and period decreases from infinity to 2pD/V0 . The front in
this case propagates with a speedV(0),V0 , from the left to
the right as depicted in Fig. 1. Atk(0)5V0/D the front
degenerates in a nonpropagating ring of radius 1/k5D/V0 .
When k(0) becomes greater thanV0/D and moves toward
2V0/D the space oscillating front appears again but now the
behavior of its amplitude and period is opposite to that which
took place whenk(0) ran from zero toV0/D. Also the di-
rection of front propagation reverses: the front moves from
the right to the left in Fig. 1 with the speeduV(0)u,V0 .

The valuek(0)52V0/D corresponds to the separatrix so-
lution which has the algebraic soliton-type shape

FIG. 1. Shapes of the fronts corresponding to the steady-state
solutions of the kinematic model@Eq. ~8!# in the eikonal approxi-
mation. The arrows show the propagation direction of patterns. In
all casesV0/D51. Qualitative features of the solutions are dis-
cussed in the text.
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k~ l !5
2V0 /D

11S l

D/V0
D 2 . ~15!

The corresponding front retains only one loop, with asymp-
totically flat wings,k( l→6`)→0, separated by an angle of
p. The front moves with a speedV0 , from the right to the
left ~see Fig. 1!.

Further increase ofk(0) beyond 2V0/D retains the one-
loop structure of the front@Eq. ~13!# but changes the asymp-
totic angle a between the wings, which now becomes
smaller thanp and goes to zero ask(0)→`. The front still
moves from the right to the left, now with the velocity
uV(0)u.V0 .

Linear stability analysis shows@25# that the solutions are
stable with respect to small localized perturbations which
disappear diffusively~with characteristic timeD/V 0

2!, trav-
eling along the front towards the regions of maximum cur-
vature. Nonlocalized~even small amplitude! perturbation
may lead to the formation of a pattern with new parameters.

StableV-shaped waves have been observed recently in
the BZ reaction and in numerical experiments with the Or-
egonator model@39,40#. The other solutions are self-crossing
and therefore cannot be identified with any stationary auto-
wave pattern in homogeneous EM. The looping structure of
these solutions is an artifact of our extrapolation of the linear
dependence Eq.~7! beyond the critical curvaturekcr , where
continuous propagating fronts do not exist. Incorporating
critical curvature into the theory destroys loops, converting
them into cusps@41#, but does not essentially change the
regular parts of the solutions. Therefore these regular parts
~parts which have curvature less thenkcr! can be used for
describing patterns in piecewise stratified EM, that is, EM
consisting of stripes with semipenetrable and impenetrable
straight-line borders between them. The situation here is
similar, for instance, to that in classical electrodynamics,
when one is evaluating the electric field of a uniformly
charged infinite cylinder~conductor!. Both solutions of Pois-
son’s equation for the potential are singular~one in the ori-
gin, the other at infinity! and, hence, are unphysical in ho-
mogeneous media. But when applied to a piecewise constant
problem, being appropriately concatenated at the boundary
of the property jump, they form a bounded solution since
only their regular parts are used@42#.

III. UNBOUNDED MEDIA

Boundary conditions for ‘‘reactants’’ in the original sys-
tem~1! translate into geometric constraints on the wave-front
line @3,4,13,25,26,43#. No-flux ~impenetrable! boundary con-
ditions ~2! imply, in terms of the kinematic model, that a
steady-state front must propagate so that its line always
meets the boundary orthogonally. If the boundary is flat the
simplest example is a plane front propagating parallel to the
boundary~i.e., the front line is perpendicular to the impen-
etrable boundary!. Another possibility appears if we recall
that aV-shaped wave propagating along the axisOX remains
perpendicular to the line of its symmetry~axisOX! at any
moment of time. Thus, if we replace one half-space, say
y,0 ~see Fig. 1!, with an impenetrable border, the rest of the
V-shaped wave in the upper half-space (y.0) will remain

unperturbed. Hence a half piece of theV-shaped wave de-
scribes a ‘‘planar’’ autowave front tilted at the angle
u( l→`) and steadily propagating along the straight-line im-
penetrable boundary. Note, that the velocity of this front
along the boundary is higher,V(0)5[V0/cosu( l→`)#, than
the propagation velocity of an infinite planar front because of
the ‘‘scissors’’ effect. A plane wave and a half piece of
V-shaped wave constitute the only steady-state configura-
tions possible in 2D EM occupying a half-plane.

For a semipenetrable boundary, fronts must pass smoothly
through lines of discontinuity. In terms of the kinematic ap-
proach, the angleu @see Eq.~9!# must be a continuous func-
tion across the semipenetrable boundary or, as follows from
Eq. ~11!, projections of the normal front velocity [V(0)]
have to be identical on both sides of the discontinuity line.
Notice that the front curvature may have a discontinuity at
the boundary.

A. Piecewise change in excitability

Let us consider a flat 2D EM occupying the whole plane.
We characterize the medium by its macroscopic parameters:
the planar front velocityV0 and the diffusion coefficientD.
We suppose also that in the upper half-plane (y.0) excit-
ability is greater than in the lower half-plane (y,0), i.e., the
planar front velocity in the upper half-plane is greater than
the velocity in the lower half-plane: (V0)up.(V0) low . The
diffusion coefficient we suppose to be the same in both half-
planes. Such conditions can be generated, for instance, in a
light-sensitive BZ system by the technique developed in@13#
or by making use of the oxygen inhibition of excitability in
the ferroin-catalyzed BZ reaction@12#. We suppose that the
transition region between areas with different excitability is
infinitely thin and, hence, the medium can be considered as
piecewise constant. The assumptions closely approximate
experimental conditions@4,12,13#.

If we start with an infinitely extended planar autowave
front having some arbitrary angle to theOX axis, how will it
evolve in time? Obviously, the shape of the front must
change in the course of its evolution because local velocity is
different for different parts of the front line: the part in the
lower half-plane will lag compared to the part in the upper
area. If the difference of velocities is not very large, the front
will remain continuous~will not break at the line of discon-
tinuity! but will curve, relaxing to a steady-state configura-
tion where any point of the front must move along the axis
OX with the same velocityV(0). Twofactors will contribute
to the process of velocity equalization on both sides of the
semipenetrable boundary: ‘‘scissors’’ and curvature effects.
The shape of the resulting steady-state profile will also de-
pend on initial conditions, in our case on the initial angle
between the front and the boundary. The detailed evolution
of a front to its asymptotic~steady-state! configuration in EM
with a discontinuity is the subject for a future paper. Here we
construct asymptotic~in time! steady-state front configura-
tions and describe relaxation processes only qualitatively.

Let us suppose first that at the initial moment of time
(t50) a planar autowave front propagating in the positive
direction along the axisOX makes an acute angle with the
boundary line, as depicted in Fig. 2~a!, therefore
0,[u0[u(t50)],p/2. At the next moment of time the
part of the front in the upper half-plane will pass over its
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counterpart in the lower half-plane. Since diffusion keeps a
front line smooth, the upper and lower parts of the front turn
to be connected in the transient preboundary region with a
curved kinklike fragment which meets the boundary at an
angle larger thanu0. Distant regions of the front on both
sides of the boundary will remain unperturbed. At subse-
quent times the ‘‘kink’’ will spread out, smoothing the front
branch in the upper half-plane, without changing its asymp-
totic angle [u(t→`,l→`)5u0], and reswitching the front
branch in the lower half-plane from a plane front with initial
angleu0 to a plane front with final angleulow . The steady-
state configuration which the front achieves whent→` can
be constructed in this case from the solution~13! ~at k.0!,
which is asymptotically flat and tilted at the angleu0, for the
upper part, smoothly matching a tilted planar front for the
lower part. The relationship between anglesu0 and ulow
arises from the requirement that the final steady-state front
propagates along the axisOX with the same velocity in the
lower half-planeV(0)5[(V0) low/cosulow# as in the upper
half-planeV(0)5[(V0)up/cosu0#. Hence

cosu low5
~V0! low
~V0!up

cosu0 . ~16!

Note that, though the front line of the pattern is smooth, the
curvature of the front undergoes a jump at the semipen-

etrable boundary. Since the value of the ratio
@(V0) low/(V0)up# is less then unity, Eq.~16! can be solved for
ulow for any u0P~0,p/2!, so the steady-state pattern in this
case is similar to Fig. 2~a! for any initial anglesu0P~0,p/2!.

Next we consider the case when the initial planar front
makes an obtuse angle with the boundary line~u0,0! and is
bounded away from zero„0,cosu0,@(V0) low/(V0)up#, see
Fig. 2~b!…. In the process of evolution, the part of the front in
the lower half-plane will lag the part in the upper half-plane,
which will generate a negatively curved region on the front
in the vicinity of the boundary. The perturbation in the upper
half-plane will propagate along the front, away from the
boundary, converting this part into a planar front with an
angleuup different enough fromu0, appropriate to compen-
sate for the velocity difference in the upper and lower half-
planes. The lower branch of the front will be disturbed only
in a vicinity of the boundary becoming a portion of the
V-shaped wave@solution ~13! at k,0# with the asymptotic
angle ulow(t→`,l→`)5u0 . Equating the propagation ve-
locities of the resulting pattern determined from its upper
portionV(0)5[(V0)up/cosuup# and from a distant portion of
the lower branchV(0)5[(V0) low/cosu0# we find that

cosuup5
~V0!up
~V0! low

cosu0 . ~17!

FIG. 2. Time evolution of the initially plane wave front in an EM consisting of two half-planes with different excitability. The
semipenetrable boundary is located aty50. The plane front velocity in the upper half-plane is higher than in the lower half-plane:
(V0) low,(V0)up. The front moves from left to right. The initial state and the final steady-state are depicted by thick solid lines. Three
intermediate front configurations are drawn by thick dashed lines. The double-dotted double-dashed line shows the fragment of the corre-
sponding homogeneous pattern used for constructing the front line in a given piecewise medium.~a! the initially plane front has an acute
angle with the boundary line~0,u0,@p/2#!; ~b! the initially plane front has an obtuse angle with the boundary line~2~p/2!,u0,ucr,0!; ~c!
the initially plane front intersects the boundary line at the critical angle~u05ucr!; ~d! the initially plane front intersects the boundary line at
an angle larger than critical~ucr,u0,0!.
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As long as cosu0,@(V0) low/(V0)up#, this equation foruup has
a solution. The smoothly matching boundary condition
meansuup5ulow ( l50).

Now, at given (V0)up and (V0) low , let us increase the
initial angle the planar front makes with the boundary line
~makeu0 closer to zero!. At some moment we will approach
the condition

~V0! low
~V0!up

5cosu0 , ~18!

which, taking into account~17!, gives uup50, and, hence,
ulow(t→`,l50)50. This angle may be called the critical
angle

u05ucr5arccosF ~V0! low
~V0!up

G .
In this situation the front in the lower half-plane is exactly a
half of theV-shaped wave, and the planar front in the upper
half-plane becomes orthogonal to the boundary@see Fig.
2~c!#. Hence the pattern propagates with the velocity
V(0)5(V0)up. The jump in curvature at the boundary is
given in this case by the simple expression

kup~ l50!2klow~ l50!5
~V0!up2~V0! low

D
. ~19!

Further increasingu0 toward 0 would make~17! unsolv-
able because the right-hand side would become greater than
unity. For these initial conditions, the steady-state configura-
tion is qualitatively different from the combination of
V-shaped and planar waves we have just described. In order
to equalize velocities, while maintaining a smooth concat-
enation with the front part in the upper half-plane, the part of
the front in the lower half-plane will have to change the sign
of its tilt angle @see Fig. 2~d!#. The front line consists of a
piece of a tilted planar front, this time in the lower half-
plane, matching smoothly a piece of the one-loop solution
~15! in the upper half-plane. Since the latter solution be-
comes flat atl→` (y→`) and oriented perpendicular to the
boundary line, the pattern propagation velocity is
V(0)5(V0)up. This defines the tilting angle of the front in
the lower half-plane

cosu low5
~V0! low
~V0!up

. ~20!

Note that, within the region of applicability of~20!, the angle
ulow does not depend on the initial angleu0: the pattern in
Fig. 2~d! holds for any u0 in the region
@(V0) low/(V0)up#,cosu0<1. The geometrical stability of the
patterns we have constructed follows from the stability of the
solutions from which these patterns have been built@25,40#.

B. Piecewise diffusivity

Now we consider the case when the reaction rate in both
half-planes is identical but the diffusivity is different:
DupÞD low . Experimentalists create such discontinuities us-
ing polyacrylamide or silica gel~including their combina-
tions with aqueous solutions! @29,44# or porous glasses@45#.

Variation of the diffusion coefficient not only regulates the
curvature effect@see Eq.~7!# but induces a variation of the
plane-front velocityV0 as well becauseV0;AD @3#. Be-
cause of the square root dependency, the variation ofD can-
not just be scaled out even in the eikonal approximation we
use here. We can construct steady-state front configurations
as above, and the resulting patterns differ only quantitatively
from the previous subsection. The critical angle this time is
given by the expressionucr5arccos(AD low /Dup), and in cor-
responding expressions connecting final front angles on the
two sides of the discontinuity line the ratio (V0) low/(V0)up
has to be replaced by the ratioAD low /Dup. The general case,
in which both excitability and diffusivity vary, does not in-
troduce any qualitatively new features.

IV. BOUNDED MEDIA

A. Half-plane with a stripe

Here we consider wave-front dynamics in 2D EM occu-
pying a half spacey.0 with a stripe~of widthW adjacent to
the axisOX! where excitability is different from the upper
half-plane. The liney50 constitutes the semipenetrable
boundary while the liney52W is the impenetrable bound-
ary. This ‘‘preboundary’’ layer can be taken as a first ap-
proximation to the situation where an impenetrable boundary
introduces inhomogeneity only in a narrow layer adjacent to
the boundary, while the rest of the medium remains homo-
geneous. In the beginning of the preceding section we
pointed out two steady-state configurations existing in a half
space, a planar wave and half of aV-shaped wave, that
would be possible in the absence of the semipenetrable
boundary. What kind of steady-state front configurations can
we construct after introducing the semipenetrable boundary?

This time, due to the explicit asymmetry, we have to dis-
tinguish whether excitability is higher in the stripe or in the
rest of the EM. To start, let the excitability be lower in the
stripe, which makes the velocity of planar front here (V0) low
lower than in the outside area: (V0) low,(V0)up. Grant ini-
tially a planar front which makes an acute angle with the
boundary lines~0,u0,p/2!. Since the steady-state front
must be orthogonal to the impenetrable boundary, the lower
branch of the pattern has to be a piece of theV-wave solution
~13!, which would match the upper branch smoothly and
approach the impenetrable boundary at a right angle. The
upper fragment of the front will be either a branch of the
one-loop solution ~13!, if the initial angle is acute
~0,u0,p/2!, or a branch of the algebraic soliton solution
~15! if the initial angle is right ~u050! or even obtuse
~2p/2,u0,0!. The resulting steady-state front configura-
tions are depicted in Figs. 3~a!, 3~b!, 3~c!. The velocity of the
pattern resulting from the initial conditions 0,u0,p/2 is
V(0)5[(V0)up/cosu0# and from the initial angle
2p/2,u0<0 is V(0)5(V0)up. Neither velocity depends on
the stripe width. The curvature of the front at the impen-
etrable boundary then is

klow~ l50!5
~V0! low2~V0!up/cosu0

D
, ~21!

and also does not depend on the stripe width. The concatena-
tion angle~the angle the steady-state front makes with the
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semipenetrable boundary! ulow~0!5uup~0! can be determined
using Eqs.~9!, ~13!, ~15!, and is, certainly, dependent on the
stripe width. These patterns are, in fact, exactly half pieces of
the bell-like waves in the EM with a stripe discussed in@26#.

Notice that, in contrast to unbounded media, this time the
critical angle does not appear. The regime analogous to Fig.
2~b! does not exist in a medium with a stripe.

Next consider the situation where excitability and hence
planar front velocity is higher in the stripe than in the upper
half-plane. Again, we start from an acute initial angle be-
tween the front line and the boundary~0,u0,p/2!. The
analogous configuration in an unbounded medium is in Fig.
2~b! but now the upper half-plane is replaced with a stripe of
finite width. Let u0 be large enough: cosu0,@(V0)up/

(V0) low#. The impenetrable boundary will change only
slightly the upper branch of the steady-state pattern in Fig.
2~b!, converting it into a fragment of aV-shaped wave with
its top on the impenetrable boundary and matching smoothly
the front fragment outside the stripe, which is a fragment of
a V-wave too@see Fig. 3~d!#. The asymptotic angle of the
outside branch remains equal to the initial angleu0. The
curvature of the front at the impenetrable boundary, deter-
mined from the condition that the steady-state front must
have the same propagation velocity in the stripe
@Vlow~0!5(V0) low2D•klow~0!# as outside

FVup~ l→`!5
~V0!up
cosu0

G ,

FIG. 3. Time evolution of an initially plane wave front in an EM occupying a half-spacey.0 with a preboundary layer of widthW
where the excitability is different. The semipenetrable and impenetrable boundaries are located aty50 andy52W, respectively. The initial
state and the final steady state are depicted by thick solid lines. Three intermediate front configurations are shown by thick dashed lines.~a!
excitability is lower in the preboundary layer, and the initially plane front makes an acute angle with the boundaries~0,u0,@p/2#!; ~b! as
in ~a! exceptu050; ~c! as in ~a! except2@p/2#,u0,0; ~d! excitability is higher in the preboundary layer anducr,u0,~p/2!; ~e! as in ~d!
except 0,u0,ucr .
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is given again by Eq.~21!. The connection between the con-
catenation angle and the stripe widthW can be made using
Eqs.~9!, ~13!.

For the limiting case, when cosu05(V0)up/(V0) low , the
outside part of the front becomes exactly half of aV wave
while the front in the stripe becomes a piece of a plane wave.
The propagation velocity of the pattern in this case coincides
with the velocity of the planar front in the stripe.

When the initial angle u0 becomes enough,
cosu0.(V0)up/(V0) low , the initial front undergoes transfor-
mations similar to those depicted in Fig. 2~d!. This time the
front inside the stripe will significantly overpass its counter-
part outside and, in order to be orthogonal to the impen-
etrable boundary and smoothly match the upper branch, be-
comes convex in the direction of its propagation, constituting
a piece of the oscillating solution~14!. The front in the out-
side area becomes converted into a planar front tilted oppo-
site to its initial inclination. The resulting steady-state con-
figuration is depicted in Fig. 3~e!. The concatenation angle is
equal to the external branch tilting angleuup5ulow( l * )
52*0

l*klow(j)dj5uup@ l * ,V(0),(V0) low ,D# and the stripe
width can be related to the pattern fragment in the stripe as

W5*0
l* cosulow(j)dj @25#. The propagation velocity of the

pattern isV(0)5(V0)up/cosuup. Using these equations, one
can expressuup andV(0) as functions ofD, (V0)up, (V0) low ,
W. Thus, this time, the pattern propagation velocity depends
on the stripe width, as does the final front tilting angle in the
upper half space. Further decreasingu0 and even going to
negativeu0 ~obtuse angle between the initial front line and
boundary! will not change the qualitative character of the
resulting steady-state pattern. In fact, the configuration dis-
cussed here is just half of the pattern observed recently in
unbounded BZ EM with a stripe@13# and discussed in@25#.
Therefore, the dependence of pattern velocity on stripe width
derived there holds for the case discussed here: the pattern
velocity V(0) is a monotonically increasing function of
stripe widthW and runs from (V0)up, for W50, up to
(V0) low , for W→`. Furthermoreuup is a monotonically de-
creasing function ofW(uup,0), running from 0 forW50
up to the value determined by the critical angle in an un-
bounded medium@see Eq.~20!# for W→`.

B. Stripe divided by a semipenetrable boundary

In this subsection we consider a stripe of EM~the medium
confined between two parallel impenetrable boundaries! di-
vided along its length by a semipenetrable boundary. In other
words, the medium consists of two adjacent stripes of widths
W ~for y,0! and L ~for y.0! with different excitability.
Without loss of generality we may choose the lower stripe as
less excitable: (V0) low,(V0)up. This time only a combina-
tion of V-shaped and oscillating solutions~Fig. 4! can give
us a front which is orthogonal to the impenetrable boundaries
@uup(y5L)5ulow(y52W)50# and is smooth at the semi-
penetrable boundary@uup(y50)5ulow(y50)#. In the upper
part, the front is convex, which reduces its propagation ve-
locity V(y5L) compared to (V0)up. In the lower strip the
front is concave~a fragment of aV-shaped wave!, which
enhance its propagation velocityV(y52W) compared to
(V0) low . The steady-state pattern in this case is half of the

bell-like wave observed recently in experiments with BZ re-
action @13# and described in@25#. It has been shown in@25#
that the propagation velocity of such a pattern is a monotonic
function of the stripe width, decreasing with the increase of
W and increasing with the increase ofL.

V. DISCUSSION

For autowaves the excitation zone is followed by a refrac-
tory zone which does not allow for immediate back propa-
gation of excitation. For this reason autowaves annihilate in
collision with each other and die at impenetrable boundary.
Reflection of an excitation pulse from an impenetrable
boundary has never been observed, but several theoretical
works indicate its possibility in the cubic autocatalysis model
@30# and in a BZ model close to a subcritical Hopf bifurca-
tion @31#. Concerning a semipenetrable boundary, delayed
reflection in a nerve fiber has been shown to exist if the
duration of excitation in the medium behind the boundary is
larger that the refractory time in the medium in front of the
boundary@46#.

In 2D EM an oblique collision is possible, which intro-
duces a geometrical component to the colliding and ‘‘scat-
tered’’ fronts. No rigorous theoretical PDE study of oblique
waves propagating through a discontinuity line has been ac-
complished for 2D EM so far, and experimental data are very
limited @12,29#, but we have shown that some insight into the
geometry of collisions can be gained from purely kinematic
considerations. In comparing our findings with available ex-
perimental and theoretical data, we consider only oblique
collisions and assume that wave-boundary interactions do
not change the dynamics of excitation-recovery variables so
much as to allow for back propagation~reflection in 1D!.

Generally speaking, to observe refraction and reflection,
we would like to generate as an initial condition a piece of
plane wave propagating toward a line of discontinuity in the
medium. But for autowaves in EM this initial state is not
suitable because the free ends of the plane wave would curl
up into spiral sources, which would greatly complicate the
interpretation of the results. To avoid this problem we start
from an infinitely extended planar front propagating at an
oblique angle to the boundary. The part of the initial front

FIG. 4. The evolution of an autowave front in a stripe of EM
divided along its length by a semipenetrable boundary. The initial
state and final steady state are depicted by thick solid lines. Three
intermediate front configurations are shown by thick dashed lines.
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that is moving toward the boundary we consider as the inci-
dent wave. The initial part moving away from the boundary
prevents spirals from forming as it sweeps off to infinity. We
ignore this part, following instead the evolution of the inci-
dent wave as it moves into and interacts with the boundary.
We observe that either the incident wave will pass through
the boundary and propagate away at a characteristic angle of
refraction, or if the angle of incidence is sufficiently shallow,
the wave will suffer total internal reflection. Notice that an
autowave always passes smoothly through a semipenetrable
boundary. Hence the angle at which the wave front meets the
boundaries is always equal to the angle at which it leaves the
boundary, although the front is generally curved as it passes
through the neighborhood of the boundary. Further from the
boundary the fronts approach asymptotically to constant di-
rection of propagation, which allows us to define unambigu-
ously angle of refraction and reflection.

Let us take a look first at Figs. 2~a!, 2~b! which corre-
spond to autowaves propagating~using optical terminology!
from less ‘‘dense’’~more excitable! to more ‘‘dense’’~less
excitable! medium@Fig. 2~a!#, and in the opposite direction
@Fig. 2~b!#. In both cases the incident wave@the upper half-
plane in Fig. 2~a! and the lower half-plane in Fig. 2~b!# re-
tains its angle asymptotically:u(t→`,l→`)5u0 . The
angle of the refracted wave differs from the initial angleu0
and is determined by the property difference across the
boundary. From Eqs.~16! and ~17!, taking into account that
the ray anglec used in optics is related to our front angleu
asc5~p/2!2u, it follows that incident and refracted angles
obey the opticlike Snell’s law~sincincid/sincrefr!5n8, where
the relative index of refraction isn85[(V0)up/(V0) low# or
~for different diffusion and identical kinetics! n8
5ADup/D low. Experimentally observed values for refractive
indexes in chemical excitable systems are:n8;1 to 2.5 for
the light-sensitive BZ reaction@12,13,47#, n8;1.2 for the
solution-gel system@29#, or n8;3.7 for the solution-porous
glass system@45#. By comparison the highest known value
for the refractive index in opticsn8'2.5 to 3.5@10,48#. For
a reaction-diffusion PDE system like FHN, the value of the
ratio (V0)up/(V0) low can be arbitrarily large but in computer
simulations this ratio, with reasonable expenses of computer
resources, can only be a several fold@49#. Although fronts in
Figs. 2~a!, 2~b! are curved near the boundary in different
ways, the principle of reversibility holds for asymptotic
angles: the incident angle in Fig. 2~a! is equal to the refracted
angle in Fig. 2~b!. In neither case do we observe wave re-
flection.

Our theory agrees with Mornev’s predictions@32# con-
cerning the validity of Snell’s law and the value for the re-
fractive index, but does not confirm his conclusion that both
incident and refracted angles are determined by the medium
properties on the two sides of the discontinuity line. In our
theory the asymptotic angle of the incident wave cannot be
changed in the process of the wave-boundary collision, and
this angle defines uniquely, through Eqs.~16!, ~17!, the angle
of the refracted wave. Mornev’s mistake lies in neglecting
the autowave curvature effect essential for any consideration
of autowave propagation in 2D EM.

The only known experimental study of autowave refrac-
tion has been done by Zhabotinsky, Eager, and Epstein
@12,16#, who studied wave propagation in the ferroin-

catalyzed BZ EM using oxygen inhibition of excitability to
create a sharp boundary between two regions with different
wave velocities. Although they claimed to have confirmed
Snell’s law for autowaves, the interpretation of their obser-
vations seems problematical to us. The initial wave was ini-
tiated in those experiments by a pointlike source placed on
the semipenetrable boundary. In homogeneous medium it
would produce a target pattern~expanding circular wave!
which now is distorted by the inhomogeneity of the medium.
Our concern is that a target pattern is not a plane wave.
Therefore, they cannot measure the asymptotic angles at
which the plane waves are propagating: these are the incident
and refracted angles needed to test Snell’s law. Since the
curvature of the front changes continuously in the two re-
gions and across the boundary, it is always possible to find
two points on the front lying on different sides of the bound-
ary for which tangents to the front will define angles that
satisfy Snell’s law.

In the only experimental paper about 2D autowave refrac-
tion in a medium with piecewise change in diffusion, refrac-
tion of autowaves has been observed qualitatively but the
conditions of the experiment did not allow for quantitative
measurements@29#.

When a wave propagates from less excitable to more ex-
citable medium and the initial angleu0 exceeds a critical
value @see Fig. 2~d!#, the slope of the initial~incident! wave
changes, in the process of wave-boundary interaction, so that
the final wave front is propagating away from the boundary,
which means that the incident wave is reflected by the
boundary. A refracted component~a wave propagating in the
upper half-plane away from the boundary! is absent in this
case. Reflection for initial angles larger or equal to the criti-
cal angle is known in optics as total internal reflection@10#.
Thus, in our model, autowaves do not undergo reflection in
general but only total internal reflection. In contrast to optics,
the angle of this reflected wave is uniquely determined by
the ratio (V0)up/(V0) low and does not depend on the incident
angle, as long as it is larger than the critical angle. For total
internal reflection in optics, the wave in the target medium
propagates in the direction parallel to the discontinuity line
@10#. This is similar to our finding for autowaves@Fig. 2~d!,
upper half-plane#. Being totally reflected, light penetrates a
target medium only to a depth of a few wave lengths. The
width of the target medium is crucially important in optics
only when it becomes comparable to the wave length of the
light, which, in fact, destroys the phenomenon of total inter-
nal reflection. Our study of a medium with a stripe~Sec. IV!
shows the influence of medium size on the phenomenon of
total internal reflection for autowaves. When the plane wave
hits the boundary from the restricted area~stripe! and the
target medium is unrestricted@see Fig. 3~b!, 3~c!#, it turns out
always to be in the condition of total internal reflection: the
final steady-state branch in the stripe always moves away
from the semipenetrable boundary, and the critical angle
does not exist. When the target medium is confined in a
stripe, total internal reflection occurs only when the initial
angle exceeds a critical value, and the angle of reflection is a
function of the stripe width, with absolute value increasing
monotonically to its value for an unbounded medium@Fig.
3~d!, 3~e!#. Thus the width of the target medium influences
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the phenomenon of autowave total internal reflection but dif-
ferently than in optics.

Reflection of autowaves has been observed by Zhabotin-
sky, Eager, and Epstein@12#, whose results are in agreement
with our theory: reflection happens only when the incident
wave propagates from a less excitable to a more excitable
medium, and the angle of incidence exceeds a critical value;
the reflection angle is uniquely defined by the properties of
the media on either side of the boundary and is independent
of incident angle; and refracted and reflected autowaves
never coexist. In contrast to the reflection observed in spe-
cific one-dimensional systems@30,31,46# the reflection we
have described for autowaves in 2D EM is independent of
the local kinetics~as far as it is generic! and is instantaneous.
For those systems which exhibit reflection in 1D the
refraction-reflection law will be different in a way that both
reflected and refracted waves may be present at the same
time and the reflected wave may appear for angles smaller
than critical.

VI. CONCLUSIONS

Using kinematic theory, we have studied autowave propa-
gation in EM with a line of discontinuity. According to our
model:

~1! Autowaves which do not undergo 1D reflection also
do not exhibit 2D reflection, except for total internal reflec-
tion which is independent of local kinetics.

~2! Incident and refracted autowaves obey Snell’s law.
~3! The principle of reversibility in optics holds also for

autowaves.
~4! Like in optics, total internal reflection occurs when

the incident angle of the wave moving from the medium with
slower velocity exceeds a critical angle.

~5! In contrast to optics, where the angle of incidence
equals the angle of reflection, for autowaves the angle of
total internal reflection is independent of incident angle~pro-

vided it exceeds the critical angle!. If the target medium is
confined to a stripe, the angle of reflection increases with the
stripe width monotonically to the characteristic reflection
angle of an unbounded target medium.

~6! In contrast to optics where refracted and reflected
waves may coexist, for autowaves only one of them can exist
at a time.

Our theoretical results confirm phenomena observed in
experiments with chemical EM, but reliable quantitative ex-
perimental data concerning autowave refraction-reflection
phenomena are not available yet.

For electromagnetic waves, the refraction index is fre-
quency dependent~dispersion!. Surface water waves change
their frequency when they pass through the discontinuity line
between shallow and deep water. The geometry of auto-
waves propagating through a semipenetrable boundary sug-
gests that a train of planar fronts will change its frequency
after being refracted at the boundary line. As a result, a
boundary which is penetrable by a solitary wave may be
opaque for a wave train, if the frequency of the refracted
train would have to become higher than allowed by the au-
towave dispersion law.

The homogeneous solutions we used as building blocks
are based on the eikonal approximation~7! which is not valid
for curvatures close to a critical curvaturekcr*.0. Incorporat-
ing in the theory a more realistic functionV(k) will make
impossible in some circumstances, the concatenation of a
plane front with solutions~13!–~15!. In other words, re-
flected and refracted waves will not be possible with angles
close top/2. In those cases where initial conditions would
lead to such angles, the critical curvature effect will cause a
break in the originally continuous front.
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