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Propagation of waves through a line of discontinuity in two-dimensional excitable media:
Refraction and reflection of autowaves
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A theoretical study of excitation waves propagating in two-dimensional excitable media through the bound-
ary line between two areas with different properties is presented and compared with available experimental
evidences. Based on the kinematic approach, a complete set of steady wave-front configurations have been
constructed for unbounded media, for media confined in a half-plane, and for a strip. Our results confirm the
experimentally observed Snell's law for incident and refracted autowaves, and the existence of a critical angle
for total internal reflection[S1063-651X96)02108-3

PACS numbsgs): 03.40.Kf

[. INTRODUCTION and the FitzHugh-Nagum@HN) equations used to describe
(respectively the autocatalytic BZ reaction, and excitation
The dynamics of wave fronts propagating in two- waves in nerve and muscle tissii.
dimensional(2D) and three-dimension&BD) excitable me- In homogeneous EM, an isolated planar autowave propa-
dia (EM) have become a focus of much study since the obgates with constant amplitude, shape, and speed. A periodic
servation of nontrivial spirallike patterns in chemical train of planar autowaves propagates with amplitude, shape,
reactions[e.g., Belousov-ZhabotinskyBZ) reactio] and and speed that depend on the spacing between the waves
neuromuscular tissu¢$,2]. Excitation wavegautowavesin (dispersion [6,7]. If a wave front is curved, its speed de-
2D and 3D EM come in a variety of shapes and move inpends on its curvaturgs,8,9. Because a wave front of ex-
complicated patterns, which still challenge satisfactory theocitation is always followed by a zone of inexcitability, col-
retical explanations. liding autowaves tend to annihilate each other and disappear
Continuous mathematical models of EM are usually for-at boundaries, which distinguishes them significantly from
mulated in terms of nonlinear parabolic partial differential electromagnetic or soliton wav¢$0,11].
equationg PDE) [3,4]: Recently considerable attention has been attracted to the
study of autowaves propagating in inhomogeneous media
[4,12-17. Natural EM are often inhomogeneous, due to
temperature or concentration gradients, and controlled inho-
mogeneities can be created with ultraviolet or visible light
where{u;} is a set of local kinetic variables determining the [12,13,17,18 ultrasonic radiatior{19], or electrical fields
state of the EMD; are transport coefficientsy is the La- [14]. For inhomogeneous media the local kinetics vary in
placian operator with respect to space variablesre non-  space, that is, the functiorfg , depend, apart from the state
linear functions ofu,, u,, . . . ,u,, describing the local kinet- variables{u,v}, also on the space variabl¢z,y,z}. If the
ics of the system, and the dimension of physical space can Bgansport coefficients are space dependent as well
1, 2, or 3. Usually, systeml) is subject to no-fluxNeu- D;=Dj(x,y,z) then the first term on the right-hand side of

du;
E:DiAUi"_fi(ulyuZa ---vum)! (1)

mann boundary conditions (1) must be replaced by dil;grady;).
The reaction of a wave front to an inhomogeneity depends
grady;| poundary =0, (2)  on the size of the perturbed area of EM. Local defélike
concentration fluctuations, nonexcitable or poorly excitable
wheren is a unit vector normal to the boundary. area$ are inhomogeneities whose sizes are smaller or com-

The basic features of autowave propagating in EM can b@arable to the width of an excitation pulse. A wave front may
reproduced by two-component modets=2): an excitation overcome them and recover its shape, but they may also be
variable (1) and a recovery variable§. It is arranged that a responsible for breaking fronts and initiating spiral waas
single equilibrium state ((*,v®) exists. Small perturbations commonly believed origin of tachycardja,20)) [21]. If the
from the equilibrium state return directly tei{,v®), but su-  density of local defects is large enough, the wave-front pat-
prathreshold perturbations in the system invoke an excitatiotern can become chaotj22].
cycle which results in the generation of a propagating pulse For global inhomogeneity, properties of the medium vary
(solitary autowavewhose leading front corresponds to the continuously at scales much larger than the width of the
transition wave from the state of rest to an excited state, andxcitation pulse, or the medium is divided in large pieces
whose trailing front corresponds to a return of the system tavith different properties by negligibly thin boundaries pen-
the equilibrium state. The recovery variable) (is respon- etrable by excitation waves. In some circumstances, steady-
sible for the appearance of the trailing front and the tempostate or nearly steady-state regimes may be expected in such
rarily unexcitable region just behind an excitation front. Im- media. For instance, spiral waves drift in globally inhomo-
portant particular cases of such systems are the Oregonatgeneous medif23], as they do along impenetrable bound-
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aries [24]; bell-like waves propagate in a medium with a of the D-jump line can be preset arbitrarily, but, as time
stripe[13,25,26; and saw-tooth patterns of crossing waveselapses, incident and refracted angles become entirely deter-
develop in coupled excitable lay€dra7]. mined by diffusion

One of the simplest examples of global inhomogeneity is
stratification. In this case, properties of the medium vary in SiNgincig= VD1/(D1+D3),  SiNer=VD,/(D1+D>),
space in one direction only. For instance, a layer of BZ re- )
agent in a petri dish has an oxygen concentration gradient L . .
(and a concomitant excitability gradigrftom the air-liquid and obey an opticslike sin condition
interface to the liquid-glass interface. Waves can also propa- sing
gate in adjacent excitable layers with different properties. In _incid _ JD,/Do=ny, (6)
some cases the property varies abruptly from layer to layer, SINYretr
and the medium can be considered as piecewise constant
stratified. In contrast to an impenetraljte-flux) boundary,
the boundary between adjacent excitable layers may be se

(2) “In active media with diffusion, reflected waves are
ot observable.. . . In optics, the total internal reflection
?kes place when the angles of incidence exceed Brewster's

penetrable, provided that the excitation does not disappe ngle. This phenomenon is not observed in active media; the
from layer to layer. The phenomena of autowave propagationfi1 gee. P : . ’
refracted component of the autowave . exists with any

in layered EM can be important in biological tissues, marine L . Y
and lake ecological systems, and multilayer solid state deyalue Of inciq Within the interval O<inciy</2 [33].' .
(3) When an autowave front travels from a region with a

vices (consider, for instance, the practical importance Ofsmall value ofD to a region with a biager one. and the
electromagnetic waves propagating in optical layeRecent |, A Y €9 99¢ !
experiments with the BZ reactid2,13,16,17and theoreti- refractive index” n,, is less tha_n a certain crl_tlca_l value,
cal studieg 25,26 have shown that excitation fronts undergo Lheecgggtscgngotgiif :Cr?izgﬂﬁ]mtﬁgﬁgeéli?:v\g\?esmmp
nontrivial transformations in media with piecewise inhomo- ,p que for app ning p .
geneity. Many questions about autowaves propagation in Mornev's §|mpl|f|ed analys_ls was based on a gtra|ghtfor—
piecewise media remain open. For instance, it has been b sard generallzatlon of one-dimensional propagatlon fqr 2D
lieved for a long time that autowaves do not reflect fromar':/clj' ggecgfst: nr::m(:Fatltjr:gsc(zlfr\?;ttgxa;?fep;pv%eglgtlr?gtI?aign
boundarie$28], but recently wave reflection in the BZ reac- . ! Y, . ;Y )
tion has been observdd?2,16,29. Recent theoretical works into account. As a resglt, a n_onphysmal singularity of .the
have shown the possibility of autowave reflection in speciafp’mtow"’“/(.e front on the Imt_a @ jump appears. Also, he did :
circumstance$30,31]. not'con3|d¢r inhomogeneity due to var!at|on qf nonlinear ki-
As with other theories of piecewise continuous media netics, which would allow for comparison with recent ex-
autowave front configurations in piecewise EM are to beperlments[12,16|.

constructed from solutions for homogeneous media with apQDIEmliopniZﬁ]rir\:veosr:gds%rgerivs?éﬁliogr?ét?;é?;vsgﬁri:joanrtsl:l)?a-
propriate concatenation of the solutiofend their deriva- 9 9 P y

tives) along boundary lines. For example, for the EM Con_tween two areas with different properties. Our study is based

sisting of two half-planes with different properties abutting on the kinematic approach, a brief description of which is

along theX axis, the semipenetrable boundary conditions aré) e " Sec. II. In Sec. lll we construct steady-state wave-
ront configurations in an unbounded medium consisting of

two adjacent half-planes with different properties. Next we
Uily—o0+=Uily—0-, (3) introduce one impenetrable bounddegy half-plane with an
adjacent stripeand then two impenetrable boundarigso
adjacent strips with different propertjedVe explore varia-
i [ (4 tions in both diffusion coefficients and reaction rates. In
"\ gy y:0+_ "\ gy y:O’. Secs. IV and V we compare our results with recent experi-
ments and discuss further implications of our findings.

This simple glgorithm turns out to be difficult_ to f_ollow be- Il. MODEL AND SOLUTIONS
cause analytical solutions of the reaction-diffusion system
for 2D are not available. A comprehensive consideration of autowave propagation

The only theoretical attempt to study autowave refractionin piecewise media has to be based on systemUnfortu-
and reflection in 2D EM using this recipe was undertaken bynately, analytical solutions for 2D reaction-diffusion systems
Mornev a decade agd2]. In the framework of mode{(1),  are not available. Numerical integration is useful in many
he studied qualitatively propagation of planar waves througltases but can be extremely demanding of computer re-
a border dividing the medium into two half-planes with dif- sources. Therefore some preliminary analytical or approxi-
ferent diffusion coefficientsl; ;) and identical local kinet- mate results are advisable before one starts “number crunch-
ics. Considering incident and refracted waves as being planding.” In order to get an idea of what to expect, we face this
waves and using conditions of continuity for concentrationstudy on the kinematic approach—the only method giving a
variables and diffusion fluxes, he reached the following con-global, though certainly approximate, picture of the phenom-
clusions: ena under consideration. Here we mention those details of

(1) Autowaves undergo refraction at angles uniquely dethe approach which are necessary for understanding our re-
termined by the diffusivities of the homogeneous regionssults, referring for a fuller treatment to recent revie\84].
That is, the initial position of autowave fronts on both sides In the kinematic description a pulse structure is reduced to
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one point, so that an excited region in a 2D EM is conceived
as an infinitely thin curved line with a normal vector pointing
in the direction of the excitation propagation. Each point on
the linelike front moves in the normal direction with a ve-
locity V=V(k) determined by the front curvatute at this
point. For reaction-diffusion systems this dependencekfor
not too close to some critical vallke,, can be taken as linear
[618!9]

planar
front

oscillating
front

oscillating

one loop
front

front
< } % O 3 >o><>
Y ) : :
Here V, is the velocity of the planar front, anD is the

diffusion coefficient of the excitation variable. The kinematic  FIG. 1. Shapes of the fronts corresponding to the steady-state
approach specifies the shape of the wave front by the intrinsolutions of the kinematic modgEq. (8)] in the eikonal approxi-

sic equatiork=k(l,t) that for each moment of timeerelates  mation. The arrows show the propagation direction of patterns. In
the curvature of the front to the arc length along the flont all casesVy/D=1. Qualitative features of the solutions are dis-
For a steady-state frofivhich propagates without change of cussed in the text.

shape dk/9t=0, and the profile of an endless fronte

(—,+»), propagating in 2D flat EM obeys the following
nonlocal integro-differential equatidi35]

V-shaped front circle separatrix

V(k)=Vy—Dk (eikonal approximation KO)(V,/D)

A planar front k(1)=0] propagating with constant veloc-
ity V(k)=V,y=const is obviously a trivial steady-state solu-
tion of (12) and hence8).

For k(0)<O0, the front propagates in the form of a
V-shaped wavé¢38]. Its profile is described by the soliton-
type expression
By putting the right-hand side equal to zero we have ex-

dVvik()]

|
k(l)jok(§)V[k(§)]d§+T )

cluded from consideration circulating solutions, which are 1 [V(0)]>-V3

irrelevant to the present work36]. A boundary condition kih=-5 , —oe<l<w, (13
k(0) also has to be specified in order to determine a unique VO+V(O)COSI{—

solution of Eq.(8). lo

The intrinsic equationk(l) defines the front curve
uniquely except for its position and orientation on a planewith the characteristic lengthy= D/A\|[V(0)]?°~V2|. The
Parametric representation of an actual front line in the Careurvature of this front decreases exponentiallyl aoes to
tesian frame of reference can be constructed from the intrininfinity k(l— *=%)—0 and the asymptotic angle follows di-
sic equation by a standard proced({is,37]. In particular, rectly from Eg. (11, 6(I— *o)=arcco§Vy/V(0)]. The
the angle between the tangent to the wave front at the poin{-shaped pattern moves uniformly, with veloci0)>V,
| and the axiOY, taken as positive if measured clockwise (i.e., faster than a planar fronfrom left to right as shown in
from the positive direction of the axi®Y, is Fig. 1. As k(0)—0, the angle between asymptotes of a
V-shaped wave increases#oand the velocity of the pattern
decreases td/,, that is the pattern converts into a plane
wave.

Positivek(0) gives birth to space oscillating fronts with
shapes described by

|
au):—fok(g)da ©

Multiplying (8) by V(k), integrating once, and changing
variables froml to 6, we find that

1 [V(0)]2-V3

) -1 [V(0)]2-V§

14
+IV(0)12=[V(0) 1% (149

(10

lo

f:V( 0)do

V0+V(O)003{

whereV(0) denotes the normal velocity of the waveéat |
=0, to be distinguished frord, the velocity ak=0. Equa-
tion (10) has the obvious solution

As k(0) increases from zero up #(0)=V/D, the ampli-
tude of the front oscillations decreases frafg/D to zero,
and period decreases from infinity tar®/V,. The front in
this case propagates with a spagd)<V,, from the left to

V(6)=V(0)cos,
the right as depicted in Fig. 1. A(0)=V/D the front

11

which implies that the wave propagates alongXxhaxis with
speedV(0). Differentiating (11) with respect tdl, we find
that

D Z—lr+k\/[V(O)]2—[V(k)]2=0. (12

Solutions of this first-order differential equation are param-

etrized by the valu&(0) [25].

degenerates in a nonpropagating ring of radids=1b/V,,.
Whenk(0) becomes greater thary/D and moves toward
2V,/D the space oscillating front appears again but now the
behavior of its amplitude and period is opposite to that which
took place wherk(0) ran from zero tdVy/D. Also the di-
rection of front propagation reverses: the front moves from
the right to the left in Fig. 1 with the speéd(0)|<V,.

The valuek(0)=2Vy/D corresponds to the separatrix so-
lution which has the algebraic soliton-type shape
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2V, /D unperturbed. Hence a half piece of tkeshaped wave de-
kh=—7F—"2 (159  scribes a “planar” autowave front tilted at the angle
1+ BV ) 6(l — ) and steadily propagating along the straight-line im-
0

penetrable boundary. Note, that the velocity of this front
along the boundary is highev,(0)=[Vy/cosd(l —x)], than

‘the propagation velocity of an infinite planar front because of
the “scissors” effect. A plane wave and a half piece of
V-shaped wave constitute the only steady-state configura-
tions possible in 2D EM occupying a half-plane.

For a semipenetrable boundary, fronts must pass smoothly
through lines of discontinuity. In terms of the kinematic ap-
proach, the angl@ [see Eq(9)] must be a continuous func-
tion across the semipenetrable boundary or, as follows from
Eq. (11), projections of the normal front velocityV[0)]

The corresponding front retains only one loop, with asymp
totically flat wings,k(l — *©)—0, separated by an angle of
7. The front moves with a speed,, from the right to the
left (see Fig. L

Further increase ok(0) beyond %/,/D retains the one-
loop structure of the frontEq. (13)] but changes the asymp-
totic angle a between the wings, which now becomes
smaller thanm and goes to zero aq0)— . The front still
moves from the right to the left, now with the velocity

[V(0)|>V,. h o : . RV
. . . : ave to be identical on both sides of the discontinuity line.
L|near_ stability analysis ShOV\{QS.] that the solut_|0ns are Notice that the front curvature may have a discontinuity at
stable with respect to small localized perturbations Whlcf}he boundary

disappear diffusively(with characteristic timeD/V 3), trav-
eling along the front towards the regions of maximum cur-
vature. Nonlocalized(even small amplitude perturbation
may lead to the formation of a pattern with new parameters. Let us consider a flat 2D EM occupying the whole plane.
Stable V-shaped waves have been observed recently iWe characterize the medium by its macroscopic parameters:
the BZ reaction and in numerical experiments with the Or-the planar front velocity/, and the diffusion coefficienD.
egonator mod€l39,40. The other solutions are self-crossing We suppose also that in the upper half-playe-0) excit-
and therefore cannot be identified with any stationary autoability is greater than in the lower half-plang<0), i.e., the
wave pattern in homogeneous EM. The looping structure oplanar front velocity in the upper half-plane is greater than
these solutions is an artifact of our extrapolation of the lineathe velocity in the lower half-plane:\g) ,,>(Vo)iow- The
dependence Ed7) beyond the critical curvaturk.,, where  diffusion coefficient we suppose to be the same in both half-
continuous propagating fronts do not exist. IncorporatingPlanes. Such conditions can be generated, for instance, in a
critical curvature into the theory destroys loops, convertindight-sensitive BZ system by the technique developeld B
them into cuspg41], but does not essentially change theor by making use of the oxygen inhibition of excitability in
regular parts of the solutions. Therefore these regular parie ferroin-catalyzed BZ reactidi2]. We suppose that the
(parts which have curvature less thkg) can be used for transition region between areas with different excitability is
describing patterns in piecewise stratified EM, that is, EMinfinitely thin and, hence, the medium can be considered as
consisting of stripes with semipenetrable and impenetrablgiecewise constant. The assumptions closely approximate
straight-line borders between them. The situation here igxperimental condition4,12,13.
similar, for instance, to that in classical electrodynamics, If we start with an infinitely extended planar autowave
when one is evaluating the electric field of a uniformly front having some arbitrary angle to teX axis, how will it
charged infinite cylindefconductoy. Both solutions of Pois- evolve in time? Obviously, the shape of the front must
son’s equation for the potential are singulane in the ori-  change in the course of its evolution because local velocity is
gin, the other at infinity and, hence, are unphysical in ho- different for different parts of the front line: the part in the
mogeneous media. But when applied to a piecewise constalwer half-plane will lag compared to the part in the upper
problem, being appropriately concatenated at the boundargrea. If the difference of velocities is not very large, the front
of the property jump, they form a bounded solution sincewill remain continuougwill not break at the line of discon-

A. Piecewise change in excitability

only their regular parts are usgd?2]. tinuity) but will curve, relaxing to a steady-state configura-
tion where any point of the front must move along the axis
Ill. UNBOUNDED MEDIA O X with the same velocity/(0). Twofactors will contribute

to the process of velocity equalization on both sides of the

Boundary conditions for “reactants” in the original sys- semipenetrable boundary: “scissors” and curvature effects.
tem (1) translate into geometric constraints on the wave-fronifThe shape of the resulting steady-state profile will also de-
line [3,4,13,25,26,4B No-flux (impenetrablgboundary con-  pend on initial conditions, in our case on the initial angle
ditions (2) imply, in terms of the kinematic model, that a between the front and the boundary. The detailed evolution
steady-state front must propagate so that its line alwaysef a front to its asymptoti¢steady-stateconfiguration in EM
meets the boundary orthogonally. If the boundary is flat thewith a discontinuity is the subject for a future paper. Here we
simplest example is a plane front propagating parallel to theonstruct asymptoticin time) steady-state front configura-
boundary(i.e., the front line is perpendicular to the impen- tions and describe relaxation processes only qualitatively.
etrable boundady Another possibility appears if we recall Let us suppose first that at the initial moment of time
that avV-shaped wave propagating along the &% remains  (t=0) a planar autowave front propagating in the positive
perpendicular to the line of its symmetfgxis OX) at any  direction along the axi© X makes an acute angle with the
moment of time. Thus, if we replace one half-space, saypoundary line, as depicted in Fig. (2, therefore
y<0 (see Fig. 1, with an impenetrable border, the rest of the 0<[ §,=6(t=0)]<m/2. At the next moment of time the
V-shaped wave in the upper half-spage>0) will remain  part of the front in the upper half-plane will pass over its
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FIG. 2. Time evolution of the initially plane wave front in an EM consisting of two half-planes with different excitability. The
semipenetrable boundary is locatedyat0. The plane front velocity in the upper half-plane is higher than in the lower half-plane:

(Vo)iow<(Vo)up- The front moves from left to right. The initial state and the final steady-state are depicted by thick solid lines. Three
intermediate front configurations are drawn by thick dashed lines. The double-dotted double-dashed line shows the fragment of the corre-

sponding homogeneous pattern used for constructing the front line in a given piecewise niagitw.initially plane front has an acute
angle with the boundary lin@< 6,<[#/2]); (b) the initially plane front has an obtuse angle with the boundary(liner/2) < ;< 6,<0); (c)
the initially plane front intersects the boundary line at the critical atgje 6,,); (d) the initially plane front intersects the boundary line at
an angle larger than criticab.,< 6,<0).

counterpart in the lower half-plane. Since diffusion keeps atrable boundary. Since the value of the ratio
front line smooth, the upper and lower parts of the front turn[(V) ow/(Vo) ypl is less then unity, Eq16) can be solved for
to be connected in the transient preboundary region with &, for any 6,e(0,7/2), so the steady-state pattern in this
curved kinklike fragment which meets the boundary at ancase is similar to Fig. (@) for any initial anglesf, e (0,7/2).
angle larger tharg,. Distant regions of the front on both Next we consider the case when the initial planar front
sides of the boundary will remain unperturbed. At subse-makes an obtuse angle with the boundary ligg<0) and is
quent times the “kink” will spread out, smoothing the front bounded away from zer¢0<cosfy<<[(Vo)iow/(Vo)upl s€€
branch in the upper half-plane, without changing its asymp¥ig. 2b)). In the process of evolution, the part of the front in
totic angle [f(t—«,l—xo)= 6], and reswitching the front the lower half-plane will lag the part in the upper half-plane,
branch in the lower half-plane from a plane front with initial which will generate a negatively curved region on the front
angle 6, to a plane front with final anglé,,,, . The steady- in the vicinity of the boundary. The perturbation in the upper
state configuration which the front achieves whese can  half-plane will propagate along the front, away from the
be constructed in this case from the solut{dd) (at k>0), boundary, converting this part into a planar front with an
which is asymptotically flat and tilted at the andjg for the  angle 6, different enough fron,, appropriate to compen-
upper part, smoothly matching a tilted planar front for thesate for the velocity difference in the upper and lower half-
lower part. The relationship between anglés and 6,  planes. The lower branch of the front will be disturbed only
arises from the requirement that the final steady-state frorih a vicinity of the boundary becoming a portion of the
propagates along the ax@®X with the same velocity in the V-shaped wavésolution (13) at k<<0] with the asymptotic
lower half-planeV(0)=[(Vg)ouw/CO¥0w] as in the upper angle ,,(t—,|—»)=6,. Equating the propagation ve-
half-planeV(0)=[(V,) ,/cosf,]. Hence locities of the resulting pattern determined from its upper
portion V(0)=[(V),4/cosd,,] and from a distant portion of

\V/ _ .
o S9|ow=( 0)low cosd,. (16  the lower branch/(0)=[(Vo)iow/cosfi] we find that
(Vo)up
Note that, though the front line of the pattern is smooth, the cosd, _ Volup cosfy. (17)
curvature of the front undergoes a jump at the semipen- P (Vo) iow
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As long as co8y<[(Vo)ow/(Vo) upl: this equation for,, has  Variation of the diffusion coefficient not only regulates the

a solution. The smoothly matching boundary conditioncurvature effecfsee Eq.7)] but induces a variation of the

meanst,,= b, (1=0). plane-front velocityV, as well becaus&/,~ D [3]. Be-
Now, at given ¥o),, and (Vo)ow, let us increase the cause of the square root dependency, the variatidh cén-

initial angle the planar front makes with the boundary linenot just be scaled out even in the eikonal approximation we

(make 6, closer to zerp At some moment we will approach use here. We can construct steady-state front configurations

the condition as above, and the resulting patterns differ only quantitatively
from the previous subsection. The critical angle this time is
(Vo)iow _ costy, (18  9iven by the expressiof,=arccos(/Dio,/Dyg), and in cor-
(Vo)up responding expressions connecting final front angles on the

two sides of the discontinuity line the ratid/¢)ow/(Vo) up
has to be replaced by the rati®q,,/ Dy The general case,
in which both excitability and diffusivity vary, does not in-
troduce any qualitatively new features.

which, taking into accountl7), gives 6,,=0, and, hence,
Bow(t—0o0,1=0)=0. This angle may be called the critical
angle

(VO)|OW
(Vo)up

In this situation the front in the lower half-plane is exactly a

half of theV-shaped wave, and the planar front in the upper ilr-]|er§ P;Aall T’} gogiidirov:/,\f;\i;/ﬁ -z:r:trr]it ?&aﬂéﬁ \I;\} zi(IjD'aE’e\:Anto t((:) cu-
half-plane becomes orthogonal to the boundpsge Fig. bying pacy P )

. .. the axisOX) where excitability is different from the upper
2()]. Hence the pattern propagates with the Veloc'tyhalf-plane. The liney=0 constitutes the semipenetrable

V(0)=(Vo)yp- The jump in curvature at the boundary is boundary while the ling/=—W is the impenetrable bound-

given in this case by the simple expression ary. This “preboundary” layer can be taken as a first ap-
(Vo)uo— (Vo) proximation to the situation where an impenetrable boundary
O'up__ "07low (19)  introduces inhomogeneity only in a narrow layer adjacent to

D the boundary, while the rest of the medium remains homo-
geneous. In the beginning of the preceding section we

Further increasingj, toward 0 would make17) unsolv- inted out two steady-state configurations existing in a half
able because the right-hand side would become greater th&? y 9 9
Space, a planar wave and half of\ashaped wave, that

unity. For these initial conditions, the steady-state configura: . ; .
. . o . L would be possible in the absence of the semipenetrable
tion is qualitatively different from the combination of

' . boundary. What kind of steady-state front configurations can
V-shaped and planar waves we have just described. In order : : )
We construct after introducing the semipenetrable boundary?

to equalize velocities, while maintaining a smooth concat- This time. due to the explicit asymmetry. we have to dis-
enation with the front part in the upper half-plane, the part c)ftin uish Whéther excitabilitp is hi r):er in tr?/e, stripe or in the
the front in the lower half-plane will have to change the sign 9 y g P

of its tilt angle[see Fig. 2d)]. The front line consists of a rest of the_ EM. To start, let the excitability be lower in the
piece of a tilted planar front, this time in the lower half- stripe, which makes the velocity of planar front hew)io,

. . i . lower than in the outside areaV§)q,<(Vo)p- Grant ini-
plane, matching smoothly a piece of the one-loop SOIutlor{ially a planar front which makes an acute angle with the

15) in the upper half-plane. Since the latter solution be- . X
E:oSrLes flat atipoo (y_mp) and oriented perpendicular to the boundary I|nes(0<60<7-r/2)_. Since the steady-state front
boundary line. the wpattern bropagation velocit ismust be orthogonal to the impenetrable boundary, the lower
- y - P _Ppropag Y Spranch of the pattern has to be a piece ofWheave solution
V(0)= (Vo) yp- This defines the tilting angle of the front in .
the lower half-plane (13), which wquld match the upper branch .smoothly and
approach the impenetrable boundary at a right angle. The

. IV. BOUNDED MEDIA

0o= 0= arcco%

A. Half-plane with a stripe

Kup(1=0) = Kiow(1=0)=

(Vo), upper fragment of the front will be either a branch of the
cosﬁ,ow=v—ow. (200  one-loop solution (13), if the initial angle is acute
(Volup (0<6y<ml2), or a branch of the algebraic soliton solution

(15 if the initial angle is right(6,=0) or even obtuse
(—m2<6,<0). The resulting steady-state front configura-
tions are depicted in Figs(&, 3(b), 3(c). The velocity of the
pattern resulting from the initial conditions<@®,</2 is
eV(0)=[(Vo)u_p/cos90] and fro_m the _initial angle
—m2<6,<0 is V(0)=(Vy) - Neither velocity depends on
the stripe width. The curvature of the front at the impen-
etrable boundary then is

Note that, within the region of applicability ¢20), the angle
Gow does not depend on the initial anghg: the pattern in
Fig. 2d) holds for any 6, in the region
[(V0)iow/(Vo) ypl<coshp=<1. The geometrical stability of the
patterns we have constructed follows from the stability of th
solutions from which these patterns have been HaBt4Q.

B. Piecewise diffusivity

Now we consider the case when the reaction rate in both Ky (1=0) = (Vo)iow™ (Vo) up/ €O 21)
half-planes is identical but the diffusivity is different: low D ’
D p#Diow- Experimentalists create such discontinuities us-
ing polyacrylamide or silica gelincluding their combina- and also does not depend on the stripe width. The concatena-
tions with aqueous solutiop§29,44 or porous glassdgl5].  tion angle(the angle the steady-state front makes with the
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FIG. 3. Time evolution of an initially plane wave front in an EM occupying a half-spae® with a preboundary layer of widt
where the excitability is different. The semipenetrable and impenetrable boundaries are logat@daatdy = — W, respectively. The initial
state and the final steady state are depicted by thick solid lines. Three intermediate front configurations are shown by thick da&hed lines.
excitability is lower in the preboundary layer, and the initially plane front makes an acute angle with the bout@dagges| #/2]); (b) as
in (a) exceptfy=0; (c) as in(a) except—[#/2]<6,<O0; (d) excitability is higher in the preboundary layer afg<6,<(w/2); (e) as in(d)
except 6<6y<f.

semipenetrable boundary,,(0)= 6,,0) can be determined (V),,]- The impenetrable boundary will change only
using Egs(9), (13), (15), and is, certainly, dependent on the slightly the upper branch of the steady-state pattern in Fig.
stripe width. These patterns are, in fact, exactly half pieces o2(b), converting it into a fragment of ®-shaped wave with
the bell-like waves in the EM with a stripe discusseda8). its top on the impenetrable boundary and matching smoothly
Notice that, in contrast to unbounded media, this time théhe front fragment outside the stripe, which is a fragment of
critical angle does not appear. The regime analogous to Fig V-wave too[see Fig. &l)]. The asymptotic angle of the
2(b) does not exist in a medium with a stripe. outside branch remains equal to the initial angle The
Next consider the situation where excitability and hencecurvature of the front at the impenetrable boundary, deter-
planar front velocity is higher in the stripe than in the uppermined from the condition that the steady-state front must
half-plane. Again, we start from an acute initial angle be-have the same propagation velocity in the stripe
tween the front line and the boundaf@<f,<w/2). The  [Viow(0)=(Vo)ow— D -Kiow(0)] as outside
analogous configuration in an unbounded medium is in Fig.
2(b) but now the upper half-plane is replaced with a stripe of Vv
finite width. Let ¢, be large enough: ca&<[(Vo),/
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is given again by Eq(21). The connection between the con- v

catenation angle and the stripe widti can be made using

Egs.(9), (13. L] =0 £+ 3dt f— o0
For the limiting case, when cés=(Vo)y/(Vo)iow, the o N /

outside part of the front becomes exactly half of/ avave ° / ;S 7 o)y
while the front in the stripe becomes a piece of a plane wave. _° L
The propagation velocity of the pattern in this case coincides R X
with the velocity of the planar front in the stripe. o,

When the initial angle 6, becomes enough, 'y " hony V(o)
costy> (Vo) uf/(Vo)iow, the initial front undergoes transfor- '
mations similar to those depicted in Figd2 This time the AN
front inside the stripe will significantly overpass its counter- !
part outside and, in order to be orthogonal to the impen- W Fodigre< ()
etrable boundary and smoothly match the upper branch, be-
comes convex in the direction of its propagation, constituting . 4. The evolution of an autowave front in a stripe of EM
a piece of the oscillating solutiof14). The front in the out-  givided along its length by a semipenetrable boundary. The initial
side area becomes converted into a planar front tilted oppastate and final steady state are depicted by thick solid lines. Three
site to its initial inclination. The resulting steady-state con-intermediate front configurations are shown by thick dashed lines.
figuration is depicted in Fig.(®8). The concatenation angle is
equal to the external branch tilting angl&,,=60.(I*)  bell-like wave observed recently in experiments with BZ re-
= [N Kow(£)dé= 6ud 1*,V(0),(Vo)iow.D] and the stripe action[13] and described ifi25]. It has been shown if25]
width can be related to the pattern fragment in the stripe athat the propagation velocity of such a pattern is a monotonic

_rl* ; ; function of the stripe width, decreasing with the increase of
W= [} cosfo,(£)dé [25]. The propagation velocity of the X . ; .
pattern isV(0)=(Vo)/cosd,,. Using these equations, one W and increasing with the increase lof
can expresg,, andV(0) as functions oD, (V) p, (Vo) iow:
W. Thus, this time, the pattern propagation velocity depends V. DISCUSSION

on the stripe width, as does the final front tilting ang_le inthe  Eor autowaves the excitation zone is followed by a refrac-
upper half space. Further decreasifigand even going 10 4y z0ne which does not allow for immediate back propa-
negatived, (obtuse angle between the initial front line and gation of excitation. For this reason autowaves annihilate in
boundary will not change the qualitative character of the ¢ jjision with each other and die at impenetrable boundary.
resulting steady-state pattern. In fact, the configuration diSgefiection of an excitation pulse from an impenetrable
cussed here is just half of the pattern observed recently iBongary has never been observed, but several theoretical
unbounded BZ EM with a stripfL3] and discussed if25].  \yorks indicate its possibility in the cubic autocatalysis model
Therefore, the dependence of pattern velocity on stripe W|dt|P30] and in a BZ model close to a subcritical Hopf bifurca-
derived there holds for the case discussed here: the pattefig, [31]. Concerning a semipenetrable boundary, delayed
velocity V(0) is @ monotonically increasing function of refiection in a nerve fiber has been shown to exist if the
stripe width W and runs from V), for W=0, up 10 gyration of excitation in the medium behind the boundary is

(Vo) iow., for W—eo. Furthermoref,, is a monotonically de- 5146 that the refractory time in the medium in front of the
creasing function ofV(6,,<0), running from 0 forw=0 boundary[46].

up to the valu_e determined by the critical angle in an un- |, oD EM an oblique collision is possible, which intro-
bounded mediunisee Eq(20)] for W— . duces a geometrical component to the colliding and “scat-
tered” fronts. No rigorous theoretical PDE study of oblique
waves propagating through a discontinuity line has been ac-
complished for 2D EM so far, and experimental data are very
In this subsection we consider a stripe of Eile medium  limited [12,29, but we have shown that some insight into the
confined between two parallel impenetrable boundadiés geometry of collisions can be gained from purely kinematic
vided along its length by a semipenetrable boundary. In othetonsiderations. In comparing our findings with available ex-
words, the medium consists of two adjacent stripes of widthperimental and theoretical data, we consider only oblique
W (for y<0) and L (for y>0) with different excitability. collisions and assume that wave-boundary interactions do
Without loss of generality we may choose the lower stripe asi0t change the dynamics of excitation-recovery variables so
less excitable: ¥o)ow<(Vo)yp- This time only a combina- much as to allow for back propagati¢reflection in 1D.
tion of V-shaped and oscillating solutioriBig. 4) can give Generally speaking, to observe refraction and reflection,
us a front which is orthogonal to the impenetrable boundariesve would like to generate as an initial condition a piece of
[0,(Y=L)=bou(y=—W)=0] and is smooth at the semi- plane wave propagating toward a line of discontinuity in the
penetrable boundaryf,(y=0)= 6, (y=0)]. In the upper medium. But for autowaves in EM this initial state is not
part, the front is convex, which reduces its propagation vesuitable because the free ends of the plane wave would curl
locity V(y=L) compared to V), In the lower strip the up into spiral sources, which would greatly complicate the
front is concave(a fragment of av-shaped wave which interpretation of the results. To avoid this problem we start
enhance its propagation velocity(y=—W) compared to from an infinitely extended planar front propagating at an
(Mo)iow- The steady-state pattern in this case is half of theoblique angle to the boundary. The part of the initial front

B. Stripe divided by a semipenetrable boundary
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that is moving toward the boundary we consider as the incicatalyzed BZ EM using oxygen inhibition of excitability to
dent wave. The initial part moving away from the boundarycreate a sharp boundary between two regions with different
prevents spirals from forming as it sweeps off to infinity. We wave velocities. Although they claimed to have confirmed
ignore this part, following instead the evolution of the inci- Snell's law for autowaves, the interpretation of their obser-
dent wave as it moves into and interacts with the boundaryations seems problematical to us. The initial wave was ini-
We observe that either the incident wave will pass throughiated in those experiments by a pointlike source placed on
the boundary and propagate away at a characteristic angle tfe semipenetrable boundary. In homogeneous medium it
refraction, or if the angle of incidence is sufficiently shallow, would produce a target pattel@xpanding circular waye

the wave will suffer total internal reflection. Notice that an which now is distorted by the inhomogeneity of the medium.
autowave always passes smoothly through a semipenetrat@®ur concern is that a target pattern is not a plane wave.
boundary. Hence the angle at which the wave front meets th®herefore, they cannot measure the asymptotic angles at
boundaries is always equal to the angle at which it leaves thghich the plane waves are propagating: these are the incident
boundary, although the front is generally curved as it passegnd refracted angles needed to test Snell's law. Since the
through the neighborhood of the boundary. Further from theyrvature of the front changes continuously in the two re-
boundary the fronts approach asymptotically to constant digjons and across the boundary, it is always possible to find
rection of propagation, which allows us to define unambigu+yq points on the front lying on different sides of the bound-

ously angle of refraction and reflection. ary for which tangents to the front will define angles that
Let us take a look first at Figs.(®, 2(b) which corre- sa){isfy Snell's Iawg g

spond to a}‘utowa\{’es propaga_ltlflgslng optlcall‘ termulology In the only experimental paper about 2D autowave refrac-

from less “dense”(more excitablgto more “dense” (less . . o : e

excitable medium[Fig. 2a)], and in the opposite direction tion in a medium with piecewise change in diffusion, refrac-
X ' pp tion of autowaves has been observed qualitatively but the

E)Ilz;?].eZErt:)}:.iglln Z:)tgncg Stﬁz tlg\?vé?crlliﬁ?;lggg?: Igigrzg)r]hrael_f- conditions of the experiment did not allow for quantitative
. , measurement29].

tains its angle asymptoticallyf(t—w,| -»)=6,. The ,
angle of the refracted wave differs from the initial angle ~_ '/hen a wave propagates from less excitable to more ex-
and is determined by the property difference across th&itable medium and the initial anglé, exceeds a critical
boundary. From Eq€16) and (17), taking into account that Value[see Fig. 2d)], the slope of the initialincideny wave
the ray angley used in optics is related to our front angle changes, in the process of wave-boundary interaction, so that
as = (m/2)— 6, it follows that incident and refracted angles the final wave front is propagating away from the boundary,
obey the opticlike Snell’s lawsing,q4/Siner)=n’, where ~ Which means that the incident wave is reflected by the
the relative index of refraction is’=[(V(),/(Vo)iowl Or  boundary. A refracted componefet wave propagating in the
(for different diffusion and identical kinetigs n’ upper half-plane away from the boundpaig absent in this
=D yp/Dow. Experimentally observed values for refractive case. Reflection for initial angles larger or equal to the criti-
indexes in chemical excitable systems aré=~1 to 2.5 for  cal angle is known in optics as total internal reflectjag].
the light-sensitive BZ reactiofl2,13,4%, n'~1.2 for the  Thus, in our model, autowaves do not undergo reflection in
solution-gel systeni29], or n’ ~3.7 for the solution-porous general but only total internal reflection. In contrast to optics,
glass systeni45]. By comparison the highest known value the angle of this reflected wave is uniquely determined by
for the refractive index in optica’ ~2.5 to 3.5[10,48. For  the ratio (/) ,/(Vo)iow @and does not depend on the incident
a reaction-diffusion PDE system like FHN, the value of theangle, as long as it is larger than the critical angle. For total
ratio (Vo) u/(Vo)iow Can be arbitrarily large but in computer internal reflection in optics, the wave in the target medium
simulations this ratio, with reasonable expenses of computegpropagates in the direction parallel to the discontinuity line
resources, can only be a several f4@)]. Although fronts in ~ [10]. This is similar to our finding for autowavéggig. 2(d),
Figs. 4a), 2(b) are curved near the boundary in different upper half-plang Being totally reflected, light penetrates a
ways, the principle of reversibility holds for asymptotic target medium only to a depth of a few wave lengths. The
angles: the incident angle in Fig& is equal to the refracted width of the target medium is crucially important in optics
angle in Fig. 2b). In neither case do we observe wave re-only when it becomes comparable to the wave length of the
flection. light, which, in fact, destroys the phenomenon of total inter-
Our theory agrees with Mornev’s predictiof32] con-  nal reflection. Our study of a medium with a stri(&ec. V)
cerning the validity of Snell's law and the value for the re- shows the influence of medium size on the phenomenon of
fractive index, but does not confirm his conclusion that bothtotal internal reflection for autowaves. When the plane wave
incident and refracted angles are determined by the mediuihits the boundary from the restricted arésiripe and the
properties on the two sides of the discontinuity line. In ourtarget medium is unrestrict¢dee Fig. &), 3(c)], it turns out
theory the asymptotic angle of the incident wave cannot b&lways to be in the condition of total internal reflection: the
changed in the process of the wave-boundary collision, anfinal steady-state branch in the stripe always moves away
this angle defines uniquely, through E¢E5), (17), the angle  from the semipenetrable boundary, and the critical angle
of the refracted wave. Mornev’'s mistake lies in neglectingdoes not exist. When the target medium is confined in a
the autowave curvature effect essential for any consideratiostripe, total internal reflection occurs only when the initial
of autowave propagation in 2D EM. angle exceeds a critical value, and the angle of reflection is a
The only known experimental study of autowave refrac-function of the stripe width, with absolute value increasing
tion has been done by Zhabotinsky, Eager, and Epsteimonotonically to its value for an unbounded mediliRig.
[12,16, who studied wave propagation in the ferroin- 3(d), 3(e)]. Thus the width of the target medium influences
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the phenomenon of autowave total internal reflection but difvided it exceeds the critical angldf the target medium is
ferently than in optics. confined to a stripe, the angle of reflection increases with the

Reflection of autowaves has been observed by Zhabotirstripe width monotonically to the characteristic reflection
sky, Eager, and Epste[i2], whose results are in agreement angle of an unbounded target medium.
with our theory: reflection happens only when the incident (6) In contrast to optics where refracted and reflected
wave propagates from a less excitable to a more excitableaves may coexist, for autowaves only one of them can exist
medium, and the angle of incidence exceeds a critical valuegt a time.
the reflection angle is uniquely defined by the properties of Our theoretical results confirm phenomena observed in
the media on either side of the boundary and is independemixperiments with chemical EM, but reliable quantitative ex-
of incident angle; and refracted and reflected autowaveperimental data concerning autowave refraction-reflection
never coexist. In contrast to the reflection observed in spephenomena are not available yet.
cific one-dimensional systen{80,31,44 the reflection we For electromagnetic waves, the refraction index is fre-
have described for autowaves in 2D EM is independent ofjuency dependerttispersion. Surface water waves change
the local kineticgas far as it is generi@and is instantaneous. their frequency when they pass through the discontinuity line
For those systems which exhibit reflection in 1D thebetween shallow and deep water. The geometry of auto-
refraction-reflection law will be different in a way that both waves propagating through a semipenetrable boundary sug-
reflected and refracted waves may be present at the sangests that a train of planar fronts will change its frequency
time and the reflected wave may appear for angles smalleafter being refracted at the boundary line. As a result, a
than critical. boundary which is penetrable by a solitary wave may be

opaque for a wave train, if the frequency of the refracted
VI. CONCLUSIONS train would have to become higher than allowed by the au-
] . ] ) towave dispersion law.

Using kinematic theory, we have studied autowave propa- The homogeneous solutions we used as building blocks
gation in EM with a line of discontinuity. According to our 5re pased on the eikonal approximati@which is not valid
model: _ _ for curvatures close to a critical curvatkg=>0. Incorporat-

(1) Autowaves which do not undergo 1D reflection alsojnq iy the theory a more realistic functiov(k) will make
do not exhibit 2D reflection, except for total internal reflec- jhossible in some circumstances, the concatenation of a
tion which is independent of local kinetics. , plane front with solution(13)—(15). In other words, re-

(2) Incident and refracted autowaves obey Snell's 1aw. fiacted and refracted waves will not be possible with angles

(3) The principle of reversibility in optics holds also for ¢jge to7/2. In those cases where initial conditions would

autowaves. . , , lead to such angles, the critical curvature effect will cause a
(4) Like in optics, total internal reflection occurs when break in the originally continuous front.

the incident angle of the wave moving from the medium with
slower velocity exceeds a critical angle. ACKNOWLEDGMENTS
(5) In contrast to optics, where the angle of incidence
equals the angle of reflection, for autowaves the angle of This work was supported by NSF Grant No. CHE 95-
total internal reflection is independent of incident angl®-  00763.
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